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Abstract This work presents a new and consistent deri-

vation of a completely general algorithm for the calculation

of the F matrix of the Wilson–Decius FG method of vibra-

tional analysis from a Cartesian force constant matrix,

FCART. The latter is routinely determined using a computer

program such as Gaussian03 once a molecular geometry

optimization has successfully converged. For a molecule

containing NOAT atoms, the total number of degrees of

freedom, NA, is equal to 3*NOAT and the number of

normal modes of vibration, NVIB, is equal to (NA - 5) or

(NA - 6) for, respectively, a linear or a non-linear mole-

cule. If one utilizes NOB internal coordinates to describe the

normal vibrations then NOB must be greater than or equal to

NVIB. In the former case, NRED (=NOB - NVIB)

redundancies, having frequency values of zero, will be

included in the solution of the problem. The algorithm uti-

lizes two newly defined matrices, BIN and GIN, which are

determined by the following two relationships: BIN ¼
M�1BtGIN;GIN ¼ DNVIBð Þ CNVIBð Þ�1 DNVIBð Þt where

M21 is a (NA 9 NA) diagonal matrix containing the

inverses of the atomic masses three times each (to account

for motions in the x, y and z directions), B is the well known

(NOB 9 NA) rectangular matrix of the Wilson–Decius

method which defines the transformation from Cartesian to

internal coordinates and the superscript ‘‘t’’ indicates that the

transpose of the matrix is to be taken. The DNVIB and

(CNVIB)21 matrices are determined from the diagonalization

of the (NOB 9 NOB) Wilson–Decius G matrix: GDNOB ¼
DNOBCNOB where DNOB and CNOB are the (NOB 9 NOB)

eigenvector and eigenvalue matrices, respectively, of G in

which the eigenvalues (and their corresponding eigenvec-

tors) have been reorganized from highest to lowest (i.e.,

zero) magnitude. By this process the eigenvector matrix,

DNOB, is then partitioned into two sections representing the

symmetry coordinates (the first NVIB columns) and the

redundant coordinates (the last NRED columns). The DNVIB

matrix is then defined as the (NOB 9 NVIB) rectangular

portion of DNOB which corresponds to the symmetry coor-

dinates (that is, the first NVIB columns of DNOB) and

(CNVIB)21 is a (NVIB 9 NVIB) diagonal matrix composed

of the inverses of the non-zero eigenvalues of the G matrix

arranged from lowest to highest magnitude. With these

matrices at hand, it is then possible to calculate the Wilson–

Decius F matrix with the following transformation:

F ¼ BINtFCARTBIN. With properly determined F and G

matrices, it is then possible to perform a complete normal

coordinate analysis of a molecule whose optimized geo-

metry and Cartesian force constant matrix were originally

determined through ab initio or density-functional calcula-

tions. The method is completely general and allows for the

choice between a set of non-symmetrized internal coordi-

nates, a set of symmetry adapted linear combinations of

internal coordinates or a set of symmetry coordinates. The

procedure is illustrated, via the Supplementary Material 1,

with a number of practical examples. A discussion of the

criteria necessary for a proper choice of a set of internal

coordinates which may be used for a vibrational analysis is

also included in this paper.
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1 Introduction

The widespread use of electronic structure computer pro-

grams, such as Gaussian03 [1], has enabled chemists and

physicists to determine a vast array of molecular and

electronic properties. Of particular importance to vibra-

tional analysts has been the ability to calculate the fre-

quencies and atomic displacements of the normal modes of

vibration of a molecular species determined at its opti-

mized geometry (sometimes referred as the ‘‘equilibrium

geometry’’). A large collection of papers has grown in the

literature over the last decade or two which attests to the

excellent agreement between experimental and theoretical

results.

The determination of the normal coordinates of vibra-

tion and the optimized geometry in the various versions of

the Gaussian program is usually performed within a

Cartesian coordinate framework. Accordingly, the Carte-

sian force constant (or Hessian) matrix, FCART, contains

the second partial derivatives of the potential, V, with

respect to displacements of the atoms in Cartesian coor-

dinates [2]:

FCARTð Þij¼
o2V

oXioXj

� �
0

ð1Þ

where Xi and Xj represent any of the Cartesian

displacement coordinates: Dx1, Dy1, Dz1, …, DzNOAT, and

NOAT is the number of atoms in the molecule (see

Table 1). Both i and j run over the total number of degrees

of freedom; that is:

i ¼ 1; . . .;NA ð2Þ
j ¼ 1; . . .;NA ð3Þ

where NA = 3*NOAT. The subscript ‘‘0’’ in Eq. 1 indi-

cates that the derivatives are evaluated at the equilibrium

positions of the atoms, where the first derivatives are zero.

Internal coordinates generated using the Wilson–Decius

FG method [3–7] are derived so that rotational and trans-

lational modes are eliminated [8–12], leaving purely

vibrational atomic motions in which a change of one in the

interatomic distance (i.e., a bond stretch in a diatomic

molecule) is used as the basis for normalization. Gaussian

vibrational analyses, on the other hand, assume a normali-

zation scheme in which Cartesian displacements of one are

defined as the unit. In addition, a Schmidt orthogonaliza-

tion is utilized to generate the NVIB (=NA - 5 for linear

molecules or NA - 6 for non-linear molecules; see

Table 1) linear combinations of Cartesian displacements

which are orthogonal to the five or six rotational and

translational vectors. The back-transformation of the Hes-

sian matrix (for a mass-weighted Cartesian basis set) to a

force constant matrix appropriate for the coordinates gene-

rated by the Schmidt orthogonalization is then a simple

similarity transformation (see Eq. 6 of [2]). Unfortunately,

the force constants obtained by this method are, in general,

incompatible with the kinetic energy terms derived within

the Wilson–Decius formulation because of this alternate

method of orthonormalization.

The determination of the back-transformation of the

Hessian matrix, which requires the inverse transformation

to Wilson’s well known B matrix, has been addressed by a

number of authors. Crawford and Fletcher [12] derived the

required B21 matrix transforming symmetry to Cartesian

coordinates by noting that B must contain translations and

rotations in order to be non-singular and, hence, inver-

table. Crawford [13] later relabeled the B21 matrix as A, a

symbol which has become generally accepted throughout

the vibrational literature. Califano [4] also suggested the

inclusion of translations and rotations in order to force the

B matrix to be square and non-singular, presumably with

the careful choice of exactly NVIB internal coordinates

which would adequately describe the complete set of

normal coordinates. Arenas et al. [14] published a method

for the transformation of FCART to FSYM, the force con-

stant matrix for symmetry coordinates. Unfortunately, the

derivation included manipulations of the inverses of

matrices which were clearly singular. Their justification of

the validity of the method was the agreement between the

frequencies computed with the two force constant matri-

ces. Collier [15] adopted the previous method but noted

the problems inherent in the nature of the Arenas B21

matrix without further justification. Pulay [16, 17] derived

an expression for the transformation of the harmonic

components of the Cartesian to internal force constants

Table 1 Definitions of dimensions

Dimension Definition

NOAT Number of atoms in the molecule

NA Total number of degrees of freedom

3*NOAT

NOB Number of B matrix elements

Number of internal coordinates

NVIB Number of normal modes of vibration

Number of normal coordinates

NA - 6 for non-linear molecules

NA - 5 for linear molecules

NRED Number of redundant coordinates

NOB - NVIB
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which incorporated any one from a set of non-singular

matrices similar in form to Wilson’s G matrix. He noted

that an infinite set of such matrices existed thereby

establishing the non-uniqueness of the transformation.

Pulay’s method was adopted by Lowe et al. [18] who

incorporated it into the vibrational programs of McIntosh

and Peterson [19]. A thorough treatment of the A matrix

was derived by Winnewisser et al. [20, 21] who also

showed that there were an infinite number of choices for A

and that the inclusion of additional constraints through the

use of the Eckart conditions [9] led to Crawford’s

expression for A. Murphy [22] also derived A for use in

the determination of FSYM in his suite of computer pro-

grams for vibrational force field calculations. Hoy et al.

[23] approached the determination of anharmonic force

constants through a complete redefinition of the types of

internal coordinates used. In their method, curvilinear

coordinates were defined and utilized in place of the rec-

tilinear coordinates employed in the Wilson–Decius tech-

nique. Their procedure incorporated Polo’s technique [24]

for the determination of the G21 and A matrices through

the utilization of symmetrized combinations of the curvi-

linear coordinates.

The following account is a presentation of a new and

completely consistent derivation of an algorithm for

obtaining the harmonic components of the force constant

(or F) matrix elements which are compatible with the

Wilson–Decius method of vibrational analysis. Using this

method, it is now possible to transform the Hessian

(FCART) matrix generated by a Gaussian program into the

F matrix appropriate for use with a variety of different sets

of vibrational coordinates. One may now perform a normal

coordinate analysis by choosing between a set of non-

symmetrized internal coordinates, a set of symmetry

adapted linear combinations of internal coordinates or a

set of symmetry coordinates. This procedure has been

incorporated into a new computer program, CART [25],

which has been designed to be used with the McIntosh-

Peterson suite of computer programs [19] for vibrational

analysis.

2 Theory

All the dimensions of the matrices discussed in this paper

are determined by five parameters basic to vibrational

analysis; namely, NOAT, NA, NOB, NVIB and NRED.

The definitions of these terms are given in Table 1. For

convenience, a complete listing of every matrix and its

dimensions is presented in Table 2. The definitions and

derivations in subsequent sections will make frequent use

of transposed matrices. This is indicated through the use of

a superscript ‘‘t’’ on the matrix in question.

2.1 The kinetic and potential energies in Cartesian

and internal coordinates

If the matrices (or column vectors) of the Cartesian coor-

dinates and their time derivatives are represented as X and
_X respectively, then the expressions for the total kinetic (T)

and potential (V) energies may be written as:

2T ¼ _XtM _X ð4Þ

2V ¼ XtFCARTX ð5Þ

where FCART is a square matrix containing the Cartesian

force constants and M is a diagonal matrix, in which each

atomic mass has been included three times to account for

motion in the x, y and z directions.

Table 2 Dimensions of matrices

Matrix Number

of rows

Number

of columns

A NA NOB

B NOB NA

B̂ NVIB NA

BIN NOB NA

C NA NVIB

D NOB NOB

DNOB NOB NOB

DNVIB NOB NVIB

ENA NA NA

ENOB NOB NOB

ENVIB NVIB NVIB

M NA NA

M21 NA NA

F NOB NOB

F̂ NVIB NVIB

FCART NA NA

G NOB NOB

G21 NOB NOB

Ĝ NVIB NVIB

Ĝ
�1

NVIB NVIB

GIN NOB NOB

C NOB NOB

CNOB NOB NOB

CNVIB NVIB NVIB

CIN NOB NOB

Ĉ NVIB NVIB

Ĉ�1 NVIB NVIB

R NOB 1

Ŝ NVIB 1

UNOB NOB NOB

UNVIB NVIB NOB

X NA 1

Y NA NOB
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In the Wilson–Decius formulation, the matrices (or

column vectors) of the internal coordinates and their time

derivatives are written as R and _R; respectively. The total

kinetic (T) and potential (V) energies are then determined

by the following expressions:

2T ¼ _R
t
G�1 _R ð6Þ

2V ¼ RtFR ð7Þ

where F and G are square matrices. F contains the force

constants for the internal coordinates and G, occasionally

referred to as the ‘‘inverse kinetic energy’’ matrix, is defined as:

G ¼ BM�1Bt ð8Þ

where M-1 is a diagonal matrix, in which the inverse of each

atomic mass has been included three times to account, again,

for motion in the x, y and z directions. The rectangular B

matrix defines the transformation from Cartesian to internal

coordinates by the following relationship:

R ¼ BX ð9Þ

Derivations of the B matrix elements are well

documented [8] as are examples of the explicit

determination of their numerical values [3, 6]. The G

matrix is symmetric about its main diagonal (i.e., Gij = Gji)

and contains only real elements.1 This is of critical

importance in the determination of symmetry coordinates.

2.2 The transformation of the F to the FCART matrix

This transformation is well known [26] and is easily

achieved through the use of Eqs. 7 and 9:

2V ¼ RtFR

¼ BXð ÞtFðBXÞ
¼ XtBtFBX

¼ Xt BtFB
� �

X

¼ XtFCARTX ð10Þ

Therefore we may conclude that:

FCART ¼ BtFB ð11Þ

An illustration of this type of transformation is presented

for a diatomic molecule in Example 1 of the

Supplementary Material 1.

2.3 The diagonalization of the G matrix and the

identification of redundant coordinates

Diagonalization of the G matrix will produce a set of NOB

real eigenvectors and eigenvalues which are defined,

respectively, by the D and C matrices of the following

equation:

GD ¼ DC ð12Þ

Since G is a real, symmetric matrix, the eigenvectors

generated by this process will be orthogonal.2 Accordingly,

the D matrix is generally normalized so that:

DDt ¼ DtD ¼ ENOB ð13Þ

where ENOB is the identity matrix of dimension (NOB x

NOB). The eigenvalues of G are contained within the

diagonal C matrix.

The following derivations are greatly facilitated if the

eigenvalues, and their corresponding eigenvectors, are

reordered from the highest (i.e., most positive) to lowest

(i.e., zero) value. The fully reordered D and C matrices will

henceforth be referred to as DNOB and CNOB. It is then

possible to rewrite Eq. 12 as:

GDNOB ¼ DNOBCNOB ð14Þ

Since DNOB is composed of the same eigenvectors as D,

except in a different order, it follows that:

DNOBð Þ DNOBð Þt¼ DNOBð Þt DNOBð Þ ¼ ENOB ð15Þ

Moreover, it is possible to right multiply Eq. 14 by

(DNOB)t to obtain:

G ¼ DNOBð ÞCNOB DNOBð Þt ð16Þ

In the special case where NOB = NVIB and the set of

internal coordinates used to construct the B matrix includes

no redundancies then the G matrix will be non-singular and

may be easily inverted, as rearrangement of Eq. 16 shows:

G�1 ¼ DNOBð ÞCNOB DNOBð Þt
� ��1

¼ DNOBð Þt
� ��1

CNOBð Þ�1 DNOBð Þ�1

¼ DNOBð Þ CNOBð Þ�1 DNOBð Þt ð17Þ

For the more common case where NOB [ NVIB, the

internal coordinate set used for the vibrational analysis

must, of necessity, contain redundant coordinates in which

case the G matrix will be singular and, hence, non-

invertable.

The method of Gussoni and Zerbi [27] identifies any

positive eigenvalue, and its corresponding eigenvector, as

one characteristic of a symmetry coordinate whereas zero

eigenvalues, and their corresponding eigenvectors, signify

redundant coordinates. Thus, the first NVIB columns of

DNOB and the first NVIB diagonal elements of CNOB will

be associated with the symmetry coordinates whereas the

last NRED (=NOB - NVIB) columns of DNOB and the last

1 See, for example, page 62 of [3]. 2 See, for example, Appendix V of [3].
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NRED diagonal elements of CNOB will correspond to the

redundant coordinates.

It is advantageous to define the (NOB 9 NVIB) rect-

angular portion of DNOB which contains the first NVIB

columns as a new matrix, DNVIB. The corresponding

(NVIB 9 NVIB) portion of the eigenvalue matrix will then

be defined henceforth as CNVIB. Both of these new matrices

will be associated only with symmetry coordinates.

Because of the orthonormal properties of DNOB (Eq. 15), it

is possible to write similar identities for DNVIB:

DNVIBð Þ DNVIBð Þt¼ ENOB ð18Þ

DNVIBð Þt DNVIBð Þ ¼ ENVIB ð19Þ

where ENOB and ENVIB represent the identity matrix of

the dimension (NOB 9 NOB) and (NVIB 9 NVIB),

respectively.

Example 2 of the Supplementary Material 1 presents an

illustration of the generation and diagonalization of the G

matrix of the diatomic molecule.

2.4 The generation of symmetry coordinates

One may eliminate redundant coordinates through the

implementation of a set of NVIB symmetry coordinates, Ŝ;

which are linear combinations of internal coordinates. The

superscript ‘‘^’’ on a matrix signifies, henceforth, that it is

associated with a set of symmetry coordinates, following

the convention of Levin and Pearce [28]. It is convenient,

at this point, to define two new matrices which are related

to the DNOB and DNVIB matrices:

ÛNOB ¼ DNOBð Þt ð20Þ

ÛNVIB ¼ DNVIBð Þt ð21Þ

ÛNOB and ÛNVIB are, respectively, square and rectangular

matrices of dimensions (NOB 9 NOB) and (NVIB 9 NOB).

The method of Gussoni and Zerbi [27] also establishes

ÛNVIB as the matrix which defines the transformation from

internal, R, to symmetry coordinates, Ŝ; according to:

Ŝ ¼ ÛNVIBR ð22Þ

Substituting for R from Eq. 9, we may also write:

Ŝ ¼ ÛNVIBBX

¼ B̂X
ð23Þ

Therefore, we may define a new matrix, B̂; which defines

the transformation from Cartesian to symmetry coordinates:

B̂ ¼ ÛNVIBB ð24Þ

Because of the orthonormal nature of the eigenvectors

defined by Eqs. 20 and 29, we may write the following

useful identities:

ÛNOB

� �
ðÛNOBÞt ¼ ðÛNOBÞtðÛNOBÞ ¼ ENOB ð25Þ

ÛNVIB

� �
ÛNVIB

� �t¼ ENVIB ð26Þ

ÛNVIB

� �t
ÛNVIB

� �
¼ ENOB ð27Þ

Utilizing the definition of the B̂ matrix in Eq. 24, we

may also determine the characteristics of the corresponding

Ĝ matrix as well.

Ĝ ¼ B̂M
�1

B̂
t

¼ ÛNVIBBM�1Bt ÛNVIB

� �t

¼ ÛNVIB

� �
G ÛNVIB

� �t

¼ DNVIBð ÞtGðDNVIBÞ
¼ CNVIB

¼ Ĉ ð28Þ

Thus Ĝ; CNVIB and Ĉ are identical diagonal matrices

containing only the non-zero eigenvalues of G arranged in

descending order. As a result, all three of these matrices are

non-singular and, thus, invertable.

2.5 The transformations from internal and symmetry

coordinates to Cartesian coordinates

In order to achieve our final goal of the calculation of the F

matrix from FCART, we require both matrices which back-

transform from internal as well as symmetry coordinates to

Cartesian coordinates. These two transformations may be

defined by the following equations:

X ¼ AR ð29Þ

X ¼ CŜ ð30Þ

The notation A appears to have originated with

Crawford [13] whereas the use of C in Eq. 30 is new to

this article. Steele [26] provided an elegant derivation of A

which, by analogy, may be applied to the determination of

C. Beginning with Eq. 30, we may write:

X ¼ CŜ

¼ CB̂X
ð31Þ

Therefore we may conclude that:

CB̂ ¼ ENA ð32Þ

where ENA is the identity matrix of dimension

(NA 9 NA). Since:

Ĝ ¼ B̂M
�1

B̂
t ð33Þ

we may left multiply by C to obtain:

CĜ ¼ CB̂M�1B̂
t

¼M�1B̂
t ð34Þ
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Upon right multiplication by Ĝ�1; we have:

C ¼M�1B̂
t
Ĝ
�1

¼M�1B̂
t
Ĉ�1

¼M�1Bt ÛNVIB

� �t
Ĉ�1

¼M�1Bt DNVIBð Þ CNVIBð Þ�1 ð35Þ

Equation 35 is very similar to relationships (89) of

Levin and Pearce [28], which were derived in a very

different manner.

Commutation of the C and B̂ matrices in Eq. 32 also

yields the identity matrix, but of a different dimension:

B̂C ¼ B̂M
�1

B̂
t
Ĉ�1

¼ ĈĈ�1

¼ ENVIB ð36Þ

Since:

Ŝ ¼ ÛNVIBR ¼ DNVIBð ÞtR ð37Þ

It then follows that:

X ¼ CŜ

¼M�1Bt DNVIBð Þ CNVIBð Þ�1 DNVIBð ÞtR ð38Þ

In the special case where NVIB = NOB, Eq. 36, upon

substitution of the identity in Eq. 17, becomes:

X ¼M�1BtðDNOBÞ CNOBð Þ�1 DNOBð ÞtR
¼M�1BtG�1R

ð39Þ

which yields the traditional form of the A matrix [13, 26]:

A ¼M�1BtG�1 ð40Þ

Using arguments analogous to those shown above, it

may be shown that commutation of the A and B matrices

obey the following two identities:

AB ¼ ENA ð41Þ
BA ¼ ENOB ð42Þ

2.6 The transformation of the FCART to the F matrix

We may combine Eqs. 5, 30 and 35 to obtain the trans-

formation of FCART to F̂ :

2V ¼ XtFCARTX

¼ ðCŜÞtFCARTðCŜÞ

¼ Ŝ
t
CtFCARTCŜ

¼ Ŝ
t

CtFCARTC
� �

Ŝ

¼ Ŝ
t
F̂Ŝ ð43Þ

Therefore:

F̂ ¼ CtFCARTC ð44Þ

where

C ¼M�1BtðDNVIBÞ CNVIBð Þ�1 ð45Þ

We may now obtain the final transformation by, again,

recognizing that since:

Ŝ ¼ ÛNVIBR ¼ DNVIBð ÞtR ð46Þ

Equation 43 may then be transformed as:

2V ¼ Ŝ
t
F̂Ŝ

¼ ððDNVIBÞtRÞtF̂ðDNVIBÞtR
¼ Rt DNVIBð ÞF̂ DNVIBð ÞtR
¼ RtFR ð47Þ

It follows that:

F ¼ DNVIBð ÞF̂ DNVIBð Þt

¼ DNVIBð ÞCtFCARTC DNVIBð Þt

¼ YtFCARTY ð48Þ

where

Y ¼ C DNVIBð Þt

¼M�1Bt DNVIBð Þ CNVIBð Þ�1 DNVIBð Þt ð49Þ

It is convenient to define two new matrices at this point:

GIN ¼ DNVIBð Þ CNVIBð Þ�1 DNVIBð Þt ð50Þ

BIN ¼M�1BtGIN ð51Þ

Then the transformation of Eq. 48 may be rewritten in

its final form as:

F ¼ BINtFCARTBIN ð52Þ

Examples of this type of transformation are presented in

Examples 3–6 of the Supplementary Material 1.

2.7 The properties of the BIN and GIN matrices

The GIN matrix has the same formal structure as the G

matrix. This is easily seen by the expansion of Eq. 50:

GINij ¼
XNVIB

k¼1

DNVIBð Þik 1=ckð Þ DNVIBð Þjk
i ¼ 1; . . .;NOB

j ¼ 1; . . .;NOB

ð53Þ

where ck is the kth diagonal element (or eigenvalue) of the

CNVIB matrix.The GIN matrix is also a real, symmetric matrix,

like G. This is readily apparent by explicit determination of the

GINji element and comparison with Eq. 53:
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GINji ¼
XNVIB

k¼1

DNVIBð Þjk 1=ckð Þ DNVIBð Þik
i ¼ 1; . . .;NOB

j ¼ 1; . . .;NOB

ð54Þ

In the special case where NOB = NVIB and no

redundancies exist within the set of internal coordinates

used for the analysis, Eq. 50 is identical with (17). Thus:

GIN ¼ G�1 for NOB ¼ NVIB ð55Þ

In addition, the BIN matrix is identical with the A

matrix of Eq. 40:

BIN ¼ A for NOB ¼ NVIB ð56Þ

and serves as a pseudo ‘‘inverse’’ matrix for B (see Eqs. 41

and 42. Thus, the notations used for these two new matrices

may be viewed as acronyms of their function.

2.8 The computation of the GIN matrix

within the CART program

An alternate, but numerically equivalent, method of cal-

culating the elements of the GIN matrix is utilized within

the CART computer program; specifically, through the use

of the following equation:

GIN ¼ DNOBð ÞCIN DNOBð Þt ð57Þ

where CIN is a diagonal matrix with elements similar to

those of (CNVIB)-1, as detailed by the following

discussions.

If NOB = NVIB and no redundancies exist within the

set of internal coordinates, then CNOB contains no zero

eigenvalues and, thus, the diagonal elements of CIN are

simply given by:

CINii ¼ 1=cið Þ i ¼ 1; . . .;NOB ð58Þ

In this case, CIN, (CNVIB)-1 and (CNOB)-1 are identical

diagonal matrices. Moreover, Eqs. 17, 50 and 57 are also

identical and, ultimately, yield identical BIN matrices.

If NOB [ NVIB then CNOB contains NRED zero ele-

ments. Since division by zero is undefined, the diagonal

elements of CIN which would correspond to the NRED

zero eigenvalues of CNOB are then simply zeroed out

themselves. That is:

CINii ¼ 1=cið Þ i ¼ 1; . . .;NVIB ð59Þ
CINii ¼ 0 i ¼ NVIBþ 1; . . .;NOB ð60Þ

This procedure yields matrix elements identical to those

derived by Eq. 53. This may be easily demonstrated by

expanding Eq. 57:

GINij ¼
XNVIB

k¼1

DNOBð Þik 1=ckð Þ DNOBð Þjk

þ
XNOB

k¼NVIBþ1

DNOBð Þik 0ð Þ DNOBð Þjk

¼
XNVIB

k¼1

DNOBð Þik 1=ckð Þ DNOBð Þjk

¼
XNVIB

k¼1

DNVIBð Þik 1=ckð Þ DNVIBð Þjk
i ¼ 1; . . .;NOB

j ¼ 1; . . .;NOB

ð61Þ

Clearly, Eqs. 53 and 61 are identical.

3 Summary

The calculation of the F matrix through the use of Eqs. 50,

51 and 52 clearly depends on the diagonalization of the G

matrix. Evaluation of the latter, in turn, depends on the

choice of internal coordinates to be used in the vibrational

analysis. Therefore the successful calculation of the ele-

ments of the F matrix depends critically on the proper

choice of a set of coordinates. For a given molecule, the

determination of the majority within this set is usually

obvious. However, for very low energy skeletal motions,

such as torsions, wags and bends involving heavy atoms,

that choice can be problematic and usually requires careful

consideration.

A correctly chosen basis set must meet the following

three criteria:

(1) Diagonalization of the G matrix must generate NVIB

non-zero eigenvalues. The number of redundant coor-

dinates, NRED, is then properly calculated as the

difference between NOB and NVIB. Failure to meet

this most basic requirement demands a reexamination

of the basis set elements.

(2) The magnitudes of the smallest non-zero eigenvalues

of G must be sufficiently large to ensure that the

corresponding F matrix elements also have the

proper absolute value. The generation of unusually

small eigenvalues of the G matrix will result in the

calculation of force constants whose magnitudes are

not only too large (to compensate for the abnormally

small eigenvalues) but are also usually far outside

their normally expected range of values (a useful

compendium of bond stretching and angle bending

force constants has been given by Wilson, Decius
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and Cross3). If atomic masses and molecular bond

lengths are measured in atomic mass units and

Å
´

ngstroms, respectively, then eigenvalues with mag-

nitudes smaller than 10-5 or 10-6 are usually

indicative that one or more critically important

coordinates have been inadvertently omitted from

the analysis. An eigenvalue spectrum exhibiting a

reasonable range of positive magnitudes is generally

indicative of a well chosen set of internal or

symmetry coordinates.

(3) The magnitudes of the primary force constants (that

is, the diagonal elements of the F matrix) for internal

coordinates which are related by symmetry must be

identical. Failure to meet this basic requirement is

usually an indication that one or more basis set

elements have either been incorrectly defined or

overlooked in the original set.

A well chosen set of internal or symmetry coordinates

will satisfy all three of the requirements elaborated above.

Conversely, if a set of coordinates satisfies these criteria

then it may be taken as a positive indication that the chosen

set is indeed appropriate for a vibrational analysis of the

molecule under study.

In summary, the application of the GIN and BIN

matrices to the FCART matrix, through Eqs. 50, 51 and 52,

yields the F matrix for a set of internal coordinates which

satisfy the three criteria detailed above. In conjunction with

the original G matrix, it may be used to generate a com-

plete normal coordinate analysis [3, 5–7] of any discrete

molecule with a properly converged Cartesian force field.

This is most easily accomplished through the use of the

suite of computer programs written by McIntosh and

Peterson [19]. Of particular interest within such an ana-

lysis, the potential energy distribution (POT) matrix, based

on the method of Morino and Kuchitsu [29], is invaluable

in the assessment of the percentage contributions of each

internal coordinate to any given normal coordinate. The

new CART computer program has been designed to

interface between the BMAT (or UMAT) and ATOM2

programs of the suite mentioned above to facilitate such an

analysis [25].
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